Search results

Search for "noise equivalent power" in Full Text gives 6 result(s) in Beilstein Journal of Nanotechnology.

Measurements of dichroic bow-tie antenna arrays with integrated cold-electron bolometers using YBCO oscillators

  • Leonid S. Revin,
  • Dmitry A. Pimanov,
  • Alexander V. Chiginev,
  • Anton V. Blagodatkin,
  • Viktor O. Zbrozhek,
  • Andrey V. Samartsev,
  • Anastasia N. Orlova,
  • Dmitry V. Masterov,
  • Alexey E. Parafin,
  • Victoria Yu. Safonova,
  • Anna V. Gordeeva,
  • Andrey L. Pankratov,
  • Leonid S. Kuzmin,
  • Anatolie S. Sidorenko,
  • Silvia Masi and
  • Paolo de Bernardis

Beilstein J. Nanotechnol. 2024, 15, 26–36, doi:10.3762/bjnano.15.3

Graphical Abstract
  • measured with YBCO Josephson Junction oscillators show narrow peaks at 205 GHz for the 210 GHz array and at 225 GHz for the 240 GHz array; the separation of these two frequency bands is clearly visible. The noise equivalent power level at an operating point in the current bias mode is 5 × 10−16 W/√Hz
  • [8]. The estimated photon noise equivalent power (NEP) for the auxiliary channels is about 2 × 10−16 W/√Hz. The LiteBIRD is a satellite mission that investigates the B mode polarization of the CMB radiation to test the hypothesis of an expanding universe. This mission is carried out by the Japanese
PDF
Album
Full Research Paper
Published 04 Jan 2024

Frontiers of nanoelectronics: intrinsic Josephson effect and prospects of superconducting spintronics

  • Anatolie S. Sidorenko,
  • Horst Hahn and
  • Vladimir Krasnov

Beilstein J. Nanotechnol. 2023, 14, 79–82, doi:10.3762/bjnano.14.9

Graphical Abstract
  • a very high responsivity at 77 K (up to 9 kV/W), low noise equivalent power (NEP) of 3 × 10−13 W/Hz(1/2), and with a wide power dynamic range equal to 1 × 106 [18]. Integrating an aluminum Josephson junction, with a size of a few micrometers, operating as a single photon counter in the microwave
PDF
Editorial
Published 10 Jan 2023

Efficiency of electron cooling in cold-electron bolometers with traps

  • Dmitrii A. Pimanov,
  • Vladimir A. Frost,
  • Anton V. Blagodatkin,
  • Anna V. Gordeeva,
  • Andrey L. Pankratov and
  • Leonid S. Kuzmin

Beilstein J. Nanotechnol. 2022, 13, 896–901, doi:10.3762/bjnano.13.80

Graphical Abstract
  • determined by solving heat balance equations with account of the leakage current, sixth power of temperature in the whole temperature range, and the Andreev current using numerical methods and an automatic fit algorithm. Keywords: CEB; cold-electron bolometer; electron cooling; noise equivalent power
PDF
Album
Full Research Paper
Published 07 Sep 2022

Numerical modeling of a multi-frequency receiving system based on an array of dipole antennas for LSPE-SWIPE

  • Alexander V. Chiginev,
  • Anton V. Blagodatkin,
  • Dmitrii A. Pimanov,
  • Ekaterina A. Matrozova,
  • Anna V. Gordeeva,
  • Andrey L. Pankratov and
  • Leonid S. Kuzmin

Beilstein J. Nanotechnol. 2022, 13, 865–872, doi:10.3762/bjnano.13.77

Graphical Abstract
  • frequency channel (i.e., 145 GHz) we have a 45 GHz bandwidth. For the auxiliary frequency channels (i.e., 210 and 240 GHz) placed on the same substrate, we have bandwidths of 26 and 38 GHz, respectively. We performed some optimizations for cold-electron bolometers to achieve a photon noise-equivalent power
  • channel. The frequency response width at 50% of the maximum level for the 210 GHz channel is 26 GHz and for the 240 GHz channel is 38 GHz. In addition, the radiofrequency (RF) tails of the 240 GHz channel above 270 GHz are supposed to be suppressed by a band-pass filter. Noise-equivalent power
  • calculations for the LSPE-SWIPE The noise-equivalent power (NEP) is a measure of a minimal signal that can be detected, and it qualifies the sensitivity of a detector. The NEP is the ratio of the total system noise (which includes both the internal noise of the detector and the photon noise of the received
PDF
Album
Full Research Paper
Published 01 Sep 2022

A broadband detector based on series YBCO grain boundary Josephson junctions

  • Egor I. Glushkov,
  • Alexander V. Chiginev,
  • Leonid S. Kuzmin and
  • Leonid S. Revin

Beilstein J. Nanotechnol. 2022, 13, 325–333, doi:10.3762/bjnano.13.27

Graphical Abstract
  • characteristic, responsivity, noise, and noise-equivalent power (NEP) for a 250 GHz external signal. The optimal number of junctions to obtain the minimum NEP was found. The use of a series of junctions allows one to increase the responsivity by a factor of 2.5, the NEP value by a factor of 1.5, and the power
  • the electromagnetic analysis and numerical simulation of the broadband detector based on a series of HTSC bicrystal Josephson junctions to maximize response, power dynamic range, and noise-equivalent power. Electromagnetic Simulation Figure 1a–c shows options for the geometry of a log-periodic antenna
  • according to the additive law: The δV(PMW) dependence in Figure 7c, which is proportional to (Equation 4), has a maximum for the highest responsivity and falls to the minimum noise level at the Shapiro step. The receiving system is most comprehensively characterized by the noise-equivalent power Its value
PDF
Album
Full Research Paper
Published 28 Mar 2022

A Au/CuNiCoS4/p-Si photodiode: electrical and morphological characterization

  • Adem Koçyiğit,
  • Adem Sarılmaz,
  • Teoman Öztürk,
  • Faruk Ozel and
  • Murat Yıldırım

Beilstein J. Nanotechnol. 2021, 12, 984–994, doi:10.3762/bjnano.12.74

Graphical Abstract
  • detectivity represents the inverse of the noise equivalent power [32]. Both responsivity and specific detectivity increased with increasing illumination power density and confirmed the good performance of the fabricated Au/CuNiCoS4/p-Si photodiode. This behavior was studied and discussed in the literature for
PDF
Album
Full Research Paper
Published 02 Sep 2021
Other Beilstein-Institut Open Science Activities